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Symbols

[e]: matrix

{e}: column vector
<e>! row vector

Bold Letter or symbol: matrix or vector

Multi Degree of Freedom Systems

When the system requires more than one coordinate to describe its motion, the system is
said to be multi degree of freedom or N-DOF system. This system differs from SDOF by
the fact that it has N natural frequencies. For each natural frequency, there exist a
specific state of vibration with displacement configuration known as normal mode.
Natural frequencies are associated with Eigenvalues and normal modes (mode shapes)

are associated with Eigenvectors of the equation of motions.

Eigenvalues and Eigenvectors

Consider a square matrix A. If we multiply any vector by this matrix, the result is
another vector. There is a special-case vector X (Eigenvector) which when multiplied by
A will result in a vector in the same direction of X (with different or same length). This
can be mathematically represented by: AX =AX

Where A is a scalar and called Eigenvalue. And X is the Right Eigenvector associated

with the Eigenvalue.

Example-1:



2 1
Let A= 1 2} . This matrix has two Eigenvalues and two Eigenvectors

NS
1 2]|x X,

2-A)x+x,=0 ...(2)
X +(2-4)x,=0 ...(2)

Substituting X, from eq. (1) into eq.(2)

X —(2-4)2-2)x =0

2-1)(2-1)-1=0

A =42+3=0=(1-1)(1-3)=0

either A=1o0or 1=3

Substituting values of A in either equation (in eq. (1) for example) will result in:
when A =1:X +X, =0 =X =-X,

when A=3:-X+X,=0 =X =X,

X, 1 X 1
Eigenvectorsare %1 = L } - {_J and ¢, :{x } N {J
2 11 212

The above Eigenvectors are normalized such that x; =1
Generally, it can be shown that, for any square matrix, Eigenvalues and Eigenvectors
satisfy the following equation

(A-ADX=0 o

Where | is the identity matrix. As shown in Cramer's rule, a linear system of equations
has nontrivial solutions if the determinant of (A—Al) vanishes, so the solutions of the

above equation are:

A-Al|=0 . @



Equation (4) is named the characteristics equation of the system. Eigenvectors can be

found by substituting Eigenvalues in eq. (3).

Two Degree of Freedom

Example-2:

— — 2K

NN
=
=
AN

mX, +kx, +k(x, —X,) =0 ...(5)
mX, + 2kX, + k(x, = %,)=0 ...(6)

o el AT

Assuming sinusoidal motion, the response can be written as:

In matrix form

X, = X, sin ot
X, = X, sin ot
Substituting in the equations of motions:
(2k —mw®) X, —kX, =0 ..(7)
(3k —mw?) X, —kX,; =0 ...(8)

In matrix form



2k — ma* —k Xy |0
—k 3k —ma’ || X, 0

The above equation is an Eigenvalue problem. The characteristics equation is given by

‘2k — M’ —k

=0
-k 3k — mw*

By letting A= "
(2k =mA)(3k —mA)—k* =0

2
vk —5(5]/“5(5 =0
m m

S(kjiZ.Z% kj
L—_\Mm m

2

either 41 =3.618 hj or 1=1.382 (hj

m m

o, = /3.618(5 and @, = 1.382(£j
m m

by substituting the first value of A in equation (7) :

X,k
X, 2k—Am

AU SN Sy ST I S L .
X, 2k—3618k 1618 |,

e

> ‘N>< Re ‘H><

N
[EnN

by substituting the second value of A in equation (7) :



X, 2k-Am
Xy
X 1.618
% K _ 1 1618 S TS L D R
X, 2k-1.382k 0.618 2w, | X, 1
X,],

It should be noted that both {¥}, and {¥},are arbitrarily scaled modal shapes. These

mode shapes are unique in direction (shape) but not in value.

First mode Second mode

Response to Initial Conditions
For the last example, if the system is subjected to certain initial conditions, the motion
must satisfy the normal modes (for each mode) such that the ratios of different

coordinates remain same as the normal modes ratios for each mode. Generally:

X, =C () sinat+d, (y,) cosamt+c, (v, ),sinwt+d, (v, ), coswt

X, =C, (v, ) sinat+d, (v, ), cosat+c, (v, ),sinw,t +d, (w,), cosm,t

This can simply be written as:

Or alternatively



| < : {%}
= C, Sinwt+d, cosm,t
{Xz} ; ( ) Yy,
: 4
= qr(t){ }
; V,),

Where q(t) is a function of time depends on the initial conditions.

Example-3:
Find the response of the above system to the following excitation

x0)| [2| [%(@©0)] [0
o)l Lo 1o
Solution:

X 2
{ 1}:2 C, {%} sinot +d, {%} cos mt
X2 i=1 WZ i '7”2 i

X, =—0.618c, sinwt —0.618d, cos wt +1.618c, sin w,t +1.618d, cos w,t
X, =C,;Sinat +d, cosmt +c,sinw,t +d, cos w,t

In order to apply initial velocity conditions, we need to differentiate with respect to time
X, =—0.618a,c, cos ot + 0.618m,d, sin ot +1.618w,C, cos w,t —1.618w,d, sin w,t

X, = @,C, Cos oyt — m,d, Sin at + w,C, Cos w,t — @,d, sin w,t

Applying the initial conditions:
2=-0.618d, +1.618d,
4=d, +d,
0=-0.618w,c, +1.618w,c,

0=wmC +o,C,

From the above equations:

d, =2
d,=2
c,=¢C,=0



So far
X, =—1.236cos ot + 3.236 cos w,t

X, = 2C0Ssajt + 2Cos w,t

Facts about response of M-DOF system:
1. All modes exist in the response
2. The amount of participation of each mode in the final response depends on the
initial conditions
3. Phase angles between different modes (values of ¢; with respect to d;) depend on
the initial conditions and natural frequencies.

Modal Mass and Modal Stiffness Matrices
Defining mode shape matrix

1=[{v}, {v},]

The modal mass and modal stiffness matrices are diagonal matrices and they can be
found by post multiplying mass matrix and stiffness matrix by the mode shape matrix
and pre multiplying them by the transpose of mode shape matrix.

They are diagonal matrices. They are also sometimes named generalized mass and
generalized stiffness matrices.

[w]T[M][w]{rgl

o |-m e

2

K
[w]T[K][w]{g . H-kr} (10)

Or equivalently, to determine individual elements of the modal mass and stiffness:
me={}; [M]{w}, @D
k={v} [Klly), @2

The roots of the system can be found by multiplying the modal stiffness by the inverse
of modal mass matrix:



[%]-[k]m ] (13)

By diagonalizing the mass and stiffness matrices, the following equivalent system is
obtained for free vibration:

m.g, +kq, =0 r=12,.N (14)

Where g, are named the modal (or generalized) coordinates.
Mass Normalized Mode Shapes
The mass-normalized mode shape {¢} can be found as follows:

(¢} = \/m—{vf}r (15)

Using mass normalized mode shapes, it can be shown that:

[ [M1[g]=1 (16
WIIKI=[ 4]

Example-4:
Find the mass-normalized mode shapes for Example-2.

Solution:
The equations of motions are given by:

o el wlallo

And we have the arbitrarily scaled mode shapes:



{y), = {_0'1618} Jand (¥}, = {1'6118} cso far: [V]= {

Hence:
) [-0618 1][m 0][-0.618 1618
] [M]["”]_L.ﬁw 1}{0 m}{ 1 1 }

~11.382m 0
B 0 3.618m

1 —0.618}

{9}, = \/m—l{'/’}l: m{ 1
1

1 1.618
), :\/m—z{‘//}z :m{ 1 }

—0.618 1.618

1

1

|



Lecture-4 (MDOF part-2)

Forced Vibration of 2-DOF
Consider a 2-DOF system given by:

% el e
0 m, (X, Ky Ky ] X, 0 ...(18)

The solution is given by:
X X
=2 tlsinat
X2 X 2

Substituting the solution into the equations of motion

kll_mla)z P X, _ F
K,, kzz—mza)2 X, 0

or simply [ )]{x 1} {Fl} ....(19)
a) e
X, 0
This can be re-written as:

Xy . 1R _Adj(Z (w)) F
bz G e
P(zz_mza)2 -k,

_ —K k11m1a)2}{|:1}

‘Z (a))‘ 0

But |Z (a))| = mlmZ(a)lz _a)z)(a)zz - 0°)

Therefore:

10



X = (kzz_mza)z)Fl
1 2 2 2 2
m,m, (@, - o )(w, —®°)

_k 21F1 (20)

X . =
©omm, (of - 0*)(@] - o)

Example-5:

For the system of Example-2, find the response if a sinusoidal force is applied at the first
mass.

Solution:

B A

Using equations (17):

B (3k — ma)z)Fl
Lm0 - o) (@] - o)
B kF, ...(21)
M (0f - 0°)(@} - o)

2

Forced Response of 2-DOF in terms of Normal Modes
Considering X; from equation (21);

“ _ (3k —ma?)F, G C,
om0 -0) (0 -0") (0 -0%) (0 -°)

C, and C, can be evaluated using residues method:
Remembering that (from Example-1)

11



% =3.618(£j and @ =1.382(£j
m m

(3k —mw®)F, . 3k —3.618k 0.618 F,
=2, 2 2\ Yo=olT 2, 2 2y 17 o
m (@, —®°) m (o, — o) 2.236 m
Similarly

(3k —ma®)F, 3k —1.382k 1.618 F,
~ 2,2 2 ‘szwzz 2, 2 =

m* (o —©°) m (o —o,") 2.236 m

Hence:

Cl

C,

“ _ F, 0.618 1.618
' 2.236m

+
(a)l2 — %) (a)22 — %)

Similarly, we can show that:

F -1 1
X,= 2 NP 2
2.236m \ (0 —0°) (0, —o")

Response of Undamped MDOF to Sinusoidal Force
Consider a forced M-DOF system

[M]ix}+[K]{x}={f O
Assuming sinusoidal excitation, the above function can be written as:
([K]-@*[M]){X}={F}
or simply [Z(0)[{X}={F} (22

The matrix [Z(®)] is named dynamic stiffness matrix

X} =[Z(@)] {F}=[a(@)]{F} ...23)

12



The inverse of dynamic stiffness matrix is named Receptance FRF matrix. For
example, for a 2-DOF system, eq. (20) can be written as:

X, B a, (o) a,(@) || R
X, - ay (@) ay(w)||F, --(24)

The values of receptance matrix elements can be evaluated in terms of normalized
modal constants as follows:

We have ([K]-@*[M]) =[a(@)]"

Pre-multiply by the transpose of normalized modal matrix and post multiply by it;
[4] ([K]-@*[M])[#]=[¢] [a(@)] " [4]
Utilizing equations (13) and (14)
(L@ ]-o*[1])=[¢] [«(@)] " [4]
(@ =) ]=[g] [a(@)] " [¢]
"a)lz e 0 0 0o | ...(25)
0

0 COZZ—C()Z 0 T -1
N R S G E T

0 0 0 a)f—a)z_

by taking inverse for both sides then pre-multiply by mode shape and post-multiply by
its transpose:

[a(@)]=[¢]] (& —a)z),]_l [¢] (s

Where:

13



> L > 0 0 0
W, — @
1
_ 0 0 0
['(a)f—a)2 .]1: 0 —°

0 0 . 0 (27)

1

0 0 0
_ - |
Hence, it can easily be shown that:
N ¢ir¢jr

r

(@)=, —— (28)
r=1
Example-6:
Re-solve example-5 using modal decomposition method.

Solution:
Since F, = 0, then we have

X, B a, (o) a,(@)||F
X,| | ay(®) ay(@)||0

We need to find only o, (@) and o, (@)

We have (from example-4):

(4], - ﬁ {—0.518} and {g}, - ﬁ {1.6118}

2 2
a, (@) = by n G, _ 1 (_0-618) N 1 (1.618)
@ -0’ wf -0 1.382m (0f-o’) 3.618M (0f - o?)
a, (o) = Pnti + drotis _ 1 —0.618 N 1 1.618
T o’ @l -0 1382m (@l - o?) 3.618M (af - o)
Hence:

14



F 0.618 1.618
X, =a,(0)F = 1 ( ]

+
2.236m | (0} —0°) (0F —0?)

F -1 1
X, =a,(w)F = - 2 N T2 2
2.236m | (o —0°) (@, —o°)

Response of Undamped MDOF to General Excitation

In previous section, the response of the MDOF system to a sinusoidal excitation which a
special case is presented. In this section, the response to any input force will be
discussed.

Consider the N-DOF system:

[M]{x}+[K]{x} ={ f O (29)
The displacement vector can be written as sum of modal contributions as seen in
previous lecture:

->q0W) -vla o

Or more clearly:

rxiw rl/fl _rl//l r@”1 (l/jl Trq\
X, & v, v, ¥, v, g,
Sr=2.a,M 7 =9 ' SRR : (30b)
XN nly | WnJ N, Wn Iy | UGN
Substituting eg. (30) in eq. (29):
Z[M e (t)+Z[K ba.@)={f@)} (31)
Pre-multiplying all terms of eq. (31) by {w} ! gives:
PRZALD AR <t>+z La®={v] {10 (32)

r=1

15



Due to orthogonality of the mode shapes, all terms of the summations are vanishing
except when n =r, hence:

wh MI{w), 6.0+ K]y, .0 ={v}, {fO) (33)

Hence:

M, G, )+, 0, (1) = {w}, { F ()} (34)

Where my, k, are the modal mass and modal stiffness for mode n. The force y f(t) is

called modal (generalized) force for mode n. The above equation can be interpreted as
an equation for a single DOF system with mass my, stiffness k, and forcey f(t). Thus the

set of N coupled equations with displacement x is transformed into a set of N uncoupled
equations with modal displacement g. Once each modal displacement is evaluated by
solving the corresponding SDOF equation, the actual displacements can be calculated
from eq. (30).

**|f the applied force is sinusoidal, the solution of eq. (34) is straightforward. For any
input force however, eq. (34) can be solved by Laplace transform or even numerically
by Duhamel integral for more complex input forces.

If the initial conditions are generally not zero, the corresponding initial conditions of the
uncoupled modal coordinates can be evaluated by multiplying eq. (30) by y'M:

[T IM]{x} =[yT MIly1{a} =] m, |{a}
={a}=[m, | T IMI{x]
Note: when mass normalized mode shapes are used then:
0, () +@,0,(t) = {¢}, {T(©)}
{a}=[4T' [M1{x}

(35)

Example-7:
Re-solve example-5 using uncoupled equations of motion.

Solution:
16



Since F, = 0, then we have

{(f(t)}= {F }sm ot

We have (from example-4):

{‘//}1 _ {—0.1618} and {W}g _ {1.6118}

Hence we have:

F
For the first mode: {w}, {f(t)} =(-0.618 1>{01}sin ot = —0.618F, sin ot

Fl . :
For the second mode: {y/}Z{f(t)}:<l.618 1>{01}sm ot =1.618F, sin wt

Therefore, the uncoupled equation of motions are:
m,d, (t) + kg, (t) =—0.618F, sin ot
m,d, (t) +K,g, (t) =1.618F, sin at

Solutions of the above equations are:

(0 = 28R G o
k1(a)1 @ )
2(t)—1618—|:a)22sma)t
kz(a)2 - )

The modal stiffness factors can be evaluated as follows:

I R T 5 b o] i [ "

Using the results from Example-2: @, = ,/3 618 m and w, = /1 382

17



—0.618F, (3.618kj

m) . — :
q,(t) = sin wt = L sin ot
' 5k (o - @”) 2.236m (o - o)
K
1.618F, (1.382) -
q,(t) = M/ Sin et = L sin wt

5k(a)22—a)2) 2.236m(a)22—a)2)

Finally, the actual displacement can be evaluated from eq. (30) as follows:

{‘}i{w}rqra)

X2 r=1

-0.618 1.618
{f}={ ) }ql(m{ ] }qza)

F 0.618 1.618 i
x (t) =—0.618¢q,(t) +1.6180q,(t) = 5 2316m [(0)2 a)z) + (a)z wz)}m ot
' 1 2

X, (t)=0q,(t)+q,() = 2.2216m {(a)z__la)z) + (a)z ia)z)JSin ot

The result is compatible with that obtained from Example-6 since x,(t) = X, sinat .

H.W:
Solve problems 5.1 ,5.3,5.4,5.5
Q1: Find mass-normalized mode shapes for problems 5.1 and 5.5

Q2: for the system shown below, k =50 N/m

18



F, sinwt F, sinot
+ 1 + 2 N

7l  k k Z

Z 7

? 1kg VW 1kg ?

/i ) o) ' ”
SALLSSSSSSY PALSSSS LSS,

Find:

(a) Natural frequencies and mode shapes
(b) Modal mass and modal stiffness matrices

(c) Mass-normalized mode shapes

(d) Responses using modal decomposition
(e) Response using uncoupled equations of motion.
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