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{●}: column vector 

<●>: row vector 
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Multi Degree of Freedom Systems  

When the system requires more than one coordinate to describe its motion, the system is 

said to be multi degree of freedom or N-DOF system. This system differs from SDOF by 

the fact that it has N natural frequencies. For each natural frequency, there exist a 

specific state of vibration with displacement configuration known as normal mode. 

Natural frequencies are associated with Eigenvalues and normal modes (mode shapes) 

are associated with Eigenvectors of the equation of motions. 

 

Eigenvalues and Eigenvectors 

Consider a square matrix A . If we multiply any vector by this matrix, the result is 

another vector. There is a special-case vector X (Eigenvector) which when multiplied by 

A  will result in a vector in the same direction of X (with different or same length). This 

can be mathematically represented by: AX X
 

Where λ is a scalar and called Eigenvalue. And X  is the Right Eigenvector associated 

with the Eigenvalue. 

Example-1:  
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Let 
2 1

1 2
A

 
  
 

 . This matrix has two Eigenvalues and two Eigenvectors 

1 1

2 2

1 2

1 2

2 1

1 2

(2 ) 0 ....(1)

(2 ) 0 ....(2)

x x

x x

x x

x x







    
    

     

  

  
 

Substituting x2 from eq. (1) into eq.(2) 

1 1

2

(2 )(2 ) 0

(2 )(2 ) 1 0

4 3 0 ( 1)( 3) 0

1 3

x x

either or

 

 

   

 

   

   

      

 

 

Substituting values of λ in either equation (in eq. (1) for example) will result in: 

1 2 1 2

1 2 1 2

1: 0

3 : 0

when x x x x

when x x x x





     

     
 

Eigenvectors are  
1 1

1 2

2 21 2

1 1
,

1 1

x x
and

x x
 

      
         

      
 

The above Eigenvectors are normalized such that x1 = 1 

Generally, it can be shown that, for any square matrix, Eigenvalues and Eigenvectors 

satisfy the following equation 

( ) 0A I X 
    …. (3) 

Where I  is the identity matrix. As shown in Cramer's rule, a linear system of equations 

has nontrivial solutions if the determinant of ( )A I vanishes, so the solutions of the 

above equation are: 

0A I     …. (4) 
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Equation (4) is named the characteristics equation of the system. Eigenvectors can be 

found by substituting Eigenvalues in eq. (3). 

 

 

Two Degree of Freedom 

Example-2: 

 

 

1 1 1 2

2 2 2 1

( ) 0 (5)

2 ( ) 0 (6)

mx kx k x x

mx kx k x x

   

     

 

In matrix form 

1 1

2 2

0 2 0

0 3 0

x xm k k

x xm k k

        
                 

 

Assuming sinusoidal motion, the response can be written as: 

1 1

2 2

sin

sin

x X t

x X t







  

Substituting in the equations of motions: 

2

1 2

2

2 1

(2 ) 0 (7)

(3 ) 0 (8)

k m X kX

k m X kX





  

    

In matrix form 

2k k k 
m m 

x1 x2 
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2
1

2
2

02

03

Xk m k

Xk k m





      
     

     
 

The above equation is an Eigenvalue problem. The characteristics equation is given by 

2

2

2
0

3

k m k

k k m





 


   

By letting 
2  : 

2

2

2

(2 )(3 ) 0

5 5 0

k m k m k

k k

m m

 

 

   

   
     

   
 

5 2.236

2

k k

m m


   
   

     

1 2

3.618 1.382

3.618 1.382

k k
either or

m m

k k
and

m m

 

 

   
    

   

   
    

   

 

by substituting the first value of λ in equation (7) : 

 

1

2

1

211

1
2 22 1

2 1

2

0.6181
0.618

12 3.618 1.618

X k

X k m

X

XX k

XX k k

X











 
      

            
      

  

 

by substituting the second value of λ in equation (7) : 
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1

2

1

211

2
2 22 2

2 2

2

1.6181
1.618

12 1.382 0.618

X k

X k m

X

XX k

XX k k

X











 
     

           
     

  

 

It should be noted that both  
1

  and  
2

 are arbitrarily scaled modal shapes. These 

mode shapes are unique in direction (shape) but not in value. 

 

 

 

Response to Initial Conditions 

For the last example, if the system is subjected to certain initial conditions, the motion 

must satisfy the normal modes (for each mode) such that the ratios of different 

coordinates remain same as the normal modes ratios for each mode. Generally: 

       

       

1 1 1 1 1 1 1 2 1 2 2 1 21 1 2 2

2 1 2 1 1 2 1 2 2 2 2 2 21 1 2 2

sin cos sin cos

sin cos sin cos

x c t d t c t d t

x c t d t c t d t

       

       

   

   
 

This can simply be written as: 

 

 

Or alternatively 

x1 x2 

x1 

x2 

First mode Second mode 
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2

1 1

12 2

2
1

1 2

sin cos

( )

r r r r

r r

r

r r

x
c t d t

x

q t


 











   
    

   

 
  

 



  

 

Where qr(t) is a function of time depends on the initial conditions. 

 

Example-3:  

Find the response of the above system to the following excitation 

1 1

2 2

(0) (0)2 0
,

(0) (0)4 0

x x

x x

      
        
        

 
Solution: 

2
1 1 1

12 2 2

1 1 1 1 1 2 2 2 2

2 1 1 1 1 2 2 2 2

sin cos

0.618 sin 0.618 cos 1.618 sin 1.618 cos

sin cos sin cos

i i i i

i i i

x
c t d t

x

x c t d t c t d t

x c t d t c t d t

 
 

 

   

   



     
      

     

    

   



 

 

In order to apply initial velocity conditions, we need to differentiate with respect to time 

1 1 1 1 1 1 1 2 2 2 2 2 2

2 1 1 1 1 1 1 2 2 2 2 2 2

0.618 cos 0.618 sin 1.618 cos 1.618 sin

cos sin cos sin

x c t d t c t d t

x c t d t c t d t

       

       

    

   
 

 

Applying the initial conditions: 

1 2

1 2

2 0.618 1.618

4

d d

d d

  

 
 

1 1 2 2

1 1 2 2

0 0.618 1.618

0

c c

c c

 

 

  

 
 

 

From the above equations: 

1

2

1 2

2

2

0

d

d

c c
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So far 

1 1 2

2 1 2

1.236cos 3.236cos

2cos 2cos

x t t

x t t

 

 

  

 
 

 

Facts about response of M-DOF system: 

1. All modes exist in the response 

2. The amount of participation of each mode in the final response depends on the 

initial conditions 

3. Phase angles between different modes (values of ci with respect to di) depend on 

the initial conditions and natural frequencies. 

 

Modal Mass and Modal Stiffness Matrices 

Defining mode shape matrix 

    
1 2

[ ]       

The modal mass and modal stiffness matrices are diagonal matrices and they can be 

found by post multiplying mass matrix and stiffness matrix by the mode shape matrix 

and pre multiplying them by the transpose of mode shape matrix.  

They are diagonal matrices. They are also sometimes named generalized mass and 

generalized stiffness matrices. 

 

.1
.

2

0
[ ] [ ][ ]

0

T
r

m
M m

m
 

 
     

 
 (9) 

 

    

.1
.

2

0
[ ] [ ][ ]

0

T
r

k
K k

k
 

 
     

 
        (10) 

 

Or equivalently, to determine individual elements of the modal mass and stiffness: 

 

    
T

r r r
m M   (11) 

 

    

    
T

r r r
k K          (12) 

 

The roots of the system can be found by multiplying the modal stiffness by the inverse 

of modal mass matrix: 
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1
. . .

. . .r r rk m


                    (13) 

 

 

By diagonalizing the mass and stiffness matrices, the following equivalent system is 

obtained for free vibration: 

0 1,2, ...r r r rm q k q r N    (14) 

 

Where qr are named the modal (or generalized) coordinates. 

 

 

Mass Normalized Mode Shapes  

The mass-normalized mode shape  
r

 can be found as follows: 

                          

   
1

r r
rm

                           (15) 

Using mass normalized mode shapes, it can be shown that: 

 

[ ] [ ][ ]T M   I   (16) 

 

    

.
.[ ] [ ][ ]

T
rK              (17) 

 

 

Example-4: 

Find the mass-normalized mode shapes for Example-2. 

Solution: 

The equations of motions are given by: 

1 1

2 2

0 2 0

0 3 0

x xm k k

x xm k k

        
                   

 

And we have the arbitrarily scaled mode shapes: 
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1

0.618

1


 
  
 

, and  
2

1.618

1


 
  
 

, so far:  
0.618 1.618

1 1


 
  
 

 

 

Hence: 

0.618 1 0 0.618 1.618
[ ] [ ][ ]

1.618 1 0 1 1

1.382 0

0 3.618

T m
M

m

m

m

 
      

      
     

 
  
 

 

   
1 1

1

0.6181 1

11.382m m
 

 
   

 
 

   
2 2

2

1.6181 1

13.618m m
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Lecture-4 (MDOF part-2) 

 

Forced Vibration of 2-DOF 

Consider a 2-DOF system given by: 

1 1 11 12 1 1

2 2 21 22 2

0
sin

0 0

m x k k x F
t

m x k k x


         
         

         ….(18)

 

 

The solution is given by: 

1 1

2 2

sin
x X

t
x X


   

   
   

 

Substituting the solution into the equations of motion 

 

2
1 111 1 12

2
221 22 2

1 1

2

0

( )
0

X Fk m k

Xk k m

X F
or simply Z

X







     
    

    

   
   
  

….(19) 

 

This can be re-written as: 

 
11 1 1

2

2

22 2 12

2

121 11 1

( ( ))
( )

0 0( )

0( )

X F FAdj Z
Z

X Z

k m k

Fk k m

Z












     
      

    

  
 

    
  

 

 

 

But  
2 2 2 2

1 2 1 2( ) ( )( )Z m m        

Therefore: 
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2

22 2 1
1 2 2 2 2

1 2 1 2

21 1
2 2 2 2 2

1 2 1 2

( )

( )( )

( )( )

k m F
X

m m

k F
X

m m



   

   




 




 

 ….(20) 

 

 

Example-5: 

For the system of Example-2, find the response if a sinusoidal force is applied at the first 

mass. 

 

Solution: 

1 1 1

2 2

0 2
sin

0 3 0

x xm k k F
t

x xm k k


        
         

        
 

Using equations (17): 

2

1
1 2 2 2 2 2

1 2

1
2 2 2 2 2 2

1 2

(3 )

( )( )

( )( )

k m F
X

m

kF
X

m



   

   




 


 

 …(21) 

 

Forced Response of 2-DOF in terms of Normal Modes 

Considering X1 from equation (21); 

2

1 1 2
1 2 2 2 2 2 2 2 2 2

1 2 1 2

(3 )

( )( ) ( ) ( )

k m F C C
X

m



       


  

     

C1 and C2 can be evaluated using residues method: 

Remembering that (from Example-1) 
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2 2

1 23.618 1.382
k k

and
m m

 
   

    
     

2

1 1
1 1 12 2 2 2 2 2

2 2 1

(3 ) 3 3.618 0.618

( ) ( ) 2.236

k m F Fk k
C F

m m m
 



   


 
   

 
 

Similarly 

2

1 1
2 2 12 2 2 2 2 2

1 1 2

(3 ) 3 1.382 1.618

( ) ( ) 2.236

k m F Fk k
C F

m m m
 



   


 
   

 
 

Hence: 

 

1
1 2 2 2 2

1 2

0.618 1.618

2.236 ( ) ( )

F
X

m    

 
  

  
 

 

Similarly, we can show that: 

1
2 2 2 2 2

1 2

1 1

2.236 ( ) ( )

F
X

m    

 
  

    

 

Response of Undamped MDOF to Sinusoidal Force 

Consider a forced M-DOF system 

       ( )M x K x f t 

 
Assuming sinusoidal excitation, the above function can be written as: 

       

    

2

( )

K M X F

or simply Z X F





 

   …(22) 

The matrix  ( )Z   is named dynamic stiffness matrix 

        
1

( ) ( )X Z F F  


   …(23) 
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The inverse of dynamic stiffness matrix is named Receptance FRF matrix. For 

example, for a 2-DOF system, eq. (20) can be written as: 

1 11 12 1

2 21 22 2

( ) ( )

( ) ( )

X F

X F

   

   

     
    

     
 …(24) 

 

The values of receptance matrix elements can be evaluated in terms of normalized 

modal constants as follows: 

We have       
12

( )K M  


    

Pre-multiply by the transpose of normalized modal matrix and post multiply by it; 

             
12

( )
T T

K M      


   

Utilizing equations (13) and (14) 

        

     

     

12 2

12 2

2 2

1

2 2
12

2 2

.
.

.
.

( )

( ) ( )

0 0 0

0 0 0
( )

0 0 0

0 0 0

T

r

T

r

T

n

I     

     

 

 
   

 







    

   

 
 

  
 
 

  

…(25) 

by taking inverse for both sides then pre-multiply by mode shape and post-multiply by 

its transpose:  

     
1

2 2.
.( ) ( )

T

r     


       (26) 

Where: 
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2 2

1

1 2 22 2

2

2 2

.
.

1
0 0 0

1
0 0 0

( )

0 0 0

1
0 0 0

r

n

 

  

 



 
 
 
 
       
 
 
 
     

 (27) 

Hence, it can easily be shown that: 

2 2
1

( )
N

ir jr

ij

r r

 
 

 




      (28) 

Example-6:  

Re-solve example-5 using modal decomposition method. 

Solution: 

Since F2 = 0, then we have 

1 11 12 1

2 21 22

( ) ( )

( ) ( ) 0

X F

X

   

   

     
    

    
 

We need to find only 11( )   and 21( )   

We have (from example-4): 

   
1 2

0.618 1.6181 1

1 11.382 3.618
and

m m
 

   
    

   
 

 

 

 
 

 

   

2 2

11 11 12 12
11 2 2 2 2 2 2 2 2

1 2 1 2

21 11 22 12
21 2 2 2 2 2 2 2 2

1 2 1 2

0.618 1.6181 1
( )

1.382 3.618

1 0.618 1 1.618
( )

1.382 3.618

m m

m m

   
 

       

   
 

       


   

   


   

   

 

 

Hence: 
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Response of Undamped MDOF to General Excitation 

In previous section, the response of the MDOF system to a sinusoidal excitation which a 

special case is presented. In this section, the response to any input force will be 

discussed. 

Consider the N-DOF system: 

       ( )M x K x f t    (29) 

The displacement vector can be written as sum of modal contributions as seen in 

previous lecture: 

      
1

( )
N

r r
r

x q t q 


    (30a) 

Or more clearly: 

                

1 1 1 1 1

2 2 2 2 2 2

1

1 2

( )
N

r

r

N N N N N Nr N

x q

x q
q t

x q

   

   

   



            
            

                         
            
                        

       (30b) 

Substituting eq. (30) in eq. (29): 

       
1 1

( ) ( ) ( )
N N

r rr r
r r

M q t K q t f t 
 

     (31) 

 

Pre-multiplying all terms of eq. (31) by  
T

n
 gives: 

             
1 1

( ) ( ) ( )
N N

T T T

r rn r n r n
r r

M q t K q t f t    
 

     (32) 

1
1 11 1 2 2 2 2

1 2

1
2 21 1 2 2 2 2

1 2

0.618 1.618
( )

2.236 ( ) ( )

1 1
( )

2.236 ( ) ( )

F
X F

m

F
X F

m
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Due to orthogonality of the mode shapes, all terms of the summations are vanishing 

except when n = r, hence: 

 

             ( ) ( ) ( )
T T T

n nn n n n n
M q t K q t f t        (33) 

Hence: 

   ( ) ( ) ( )
T

n n n n n
m q t k q t f t    (34) 

 

Where mn, kn are the modal mass and modal stiffness for mode n. The force ( )T

n tψ f  is 

called modal (generalized) force for mode n. The above equation can be interpreted as 

an equation for a single DOF system with mass mn, stiffness kn and force ( )T

n tψ f . Thus the 

set of N coupled equations with displacement x is transformed into a set of N uncoupled 

equations with modal displacement q. Once each modal displacement is evaluated by 

solving the corresponding SDOF equation, the actual displacements can be calculated 

from eq. (30). 

**If the applied force is sinusoidal, the solution of eq. (34) is straightforward. For any 

input force however, eq. (34) can be solved by Laplace transform or even numerically 

by Duhamel integral for more complex input forces. 

If the initial conditions are generally not zero, the corresponding initial conditions of the 

uncoupled modal coordinates can be evaluated by multiplying eq. (30) by T
ψ M : 

     

   

.

.

1
.

.

[ ] [ ] [ ] [ ][ ]

[ ] [ ]

T T

r

T

r

M x M q m q

q m M x

  




    

    
  (35) 

Note: when mass normalized mode shapes are used then: 

   ( ) ( ) ( )
T

n n n n
q t q t f t  

 

   [ ] [ ]Tq M x    

 

 

Example-7: 

Re-solve example-5 using uncoupled equations of motion. 

Solution: 
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Since F2 = 0, then we have 

  1
( ) sin

0

F
f t t

 
  
 

 

We have (from example-4): 

   
1 2

0.618 1.618

1 1
and 

   
    
   

 

Hence we have: 

For the first mode:     1

11
( ) 0.618 1 sin 0.618 sin

0

T F
f t t F t  

 
    

 
 

For the second mode:     1

12
( ) 1.618 1 sin 1.618 sin

0

T F
f t t F t  

 
  

 
 

 

Therefore, the uncoupled equation of motions are: 

1 1 1 1 1( ) ( ) 0.618 sinm q t k q t F t    

2 2 2 2 1( ) ( ) 1.618 sinm q t k q t F t   

 

Solutions of the above equations are: 

 

2

1 1
1 2 2

1 1

0.618
( ) sin

F
q t t

k




 





 

 

2

1 2
2 2 2

2 2

1.618
( ) sin

F
q t t

k




 



 

 

The modal stiffness factors can be evaluated as follows: 

    1

2

0 0.618 1 2 0.618 1.618 5 0

0 1.618 1 3 1 1 0 5

Tk k k k
K

k k k k
 

           
                   

  

 

Using the results from Example-2: 1 23.618 and 1.382
k k

m m
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1

1
1 2 2 2 2

1 1

0.618 3.618

( ) sin sin
5 2.236

k
F

Fm
q t t t

k m
 

   

 
    

 
 

 

   

1

1
2 2 2 2 2

2 2

1.618 1.382

( ) sin sin
5 2.236

k
F

Fm
q t t t

k m
 

   

 
 
 

 
 

 

 

Finally, the actual displacement can be evaluated from eq. (30) as follows: 

 
2

1

12

( )rr
r

x
q t

x




 
 

 
   

1

1 2

2

0.618 1.618
( ) ( )

1 1

x
q t q t

x

     
      
    

  

 

   
1

1 1 2 2 2 2 2

1 2

0.618 1.618
( ) 0.618 ( ) 1.618 ( ) sin

2.236

F
x t q t q t t

m


   

 
     
  
 

 

  

   
1

2 1 2 2 2 2 2

1 2

1 1
( ) ( ) ( ) sin

2.236

F
x t q t q t t

m


   

 
    
  
 

  

The result is compatible with that obtained from Example-6 since ( ) sinn nx t X t . 

 

H.W: 

Solve problems 5.1 , 5.3, 5.4, 5.5 

Q1: Find mass-normalized mode shapes for problems 5.1 and 5.5 

Q2: for the system shown below, k = 50 N/m 
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Find: 

(a) Natural frequencies and mode shapes 

(b) Modal mass and modal stiffness matrices 

(c) Mass-normalized mode shapes 

(d) Responses using modal decomposition 

(e) Response using uncoupled equations of motion. 

 

3k k k 

1 kg 1 kg 

F1 sinωt  F2 sinωt 


